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The flow field around pairs of small particles moving and rotating in a shear flow
close to a wall at low but finite Reynolds number (Re) is computed as a function of
time by means of the lattice-Boltzmann technique. The total force and torque acting
on each particle is computed at each time step and the position of the particles is
updated. By considering the lift force and the disturbances induced by the particles,
the trajectories of the pair of particles are explained as a function of the distances
from the wall and the Reynolds number. It is shown that when particles are positioned
in a particular form, they collide forming strings. In particular, we are interested in
particle-bridge formation in shear flows, and two collided particles (a string) can be
considered as a nucleus of a particle bridge.

1. Introduction
Clustering of small particles in a laminar or turbulent flow field occurs often in prac-

tice. In the clustering process, hydrodynamic forces are dominant, but colloidal forces
play an important role. We are particularly interested in the clustering of particles in
the pores of a porous material because the particles can form bridges in the throat of
the pores and reduce the permeability of the material. An example is given in figure 1,
where bridge formation by very small particles in a natural sandstone is shown; note
that their size is less than 1/100 of the pore diameter. This type of fouling can cause
severe problems during the exploitation of oil from an underground reservoir and it is
important to understand better under which conditions bridge formation by particles
can occur. During the movement of the particles through the pore of a porous material
the Reynolds number is very low (10−3–10−2). Another important characteristic is
that there is always a solid wall not far away from the particles. As the study of
how particles form bridges is complicated, we begin studying the flow of a single
particle in the vicinity of a wall. To that purpose the flow field around the particle
is computed as a function of time by means of the lattice-Boltzmann technique (ten
Cate 2002; ten Cate et al. 2002). The total force and torque acting on the particle
is computed at each time step and its position is updated. The trajectory and the
particle induced disturbance are studied as a function of the distance from the wall
and for different Re. Next we extend the study by investigating the behaviour of two
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Figure 1. Particles bridge formation in a pore throat inside a natural sandstone. Note that
particles have a variety of sizes.

particles. Particular attention is paid to the possibility that the particles collide and
form the nucleus of a string of particles. In the final part of the paper, the possibility
that two particles form a bridge in a converging flow configuration is investigated.

Several papers have been written about the hydrodynamic forces acting on a
particle travelling in a shear flow at low, but finite, Reynolds number. The first to
compute the inertial lift force on a spherical particle moving in such a shear flow
was Saffman (1965). Cherukat & McLaughlin (1994) computed the lift force acting
on a spherical particle near a wall by means of a perturbation approach. Magnaudet
(2003) calculated the drag force and the lift force on a sphere in a linear shear flow
near a wall. Feng & Michaelides (2003) studied numerically the motion of a single
particle near a horizontal wall in a linear shear flow. They investigated at which
conditions the inertial lift force acting on a particle is large enough to overcome the
gravity force, allowing the particle to move away from the wall. As the finite size of
the particle is taken into account, the disturbance of the particle on the flow field
is also calculated. The lift force on a rotating sphere in a shear flow was studied
by Kurose & Komori (1999); they showed that, at high Re, the lift force changes
orientation. Kurose & Komori (1999) computed the hydrodynamic forces acting on
a spherical particle held in place with an imposed rotational speed, whereas we are
interested in the case where the motion of the particle is driven by the flow. Patankar
et al. (2002) studied the lift-off of a sphere in a two-dimensional channel by means
of direct numerical simulations. They paid particular attention to the role of the lift
force for relatively high Re with the influence of gravity.

When two particles are moving in a shear flow close to a wall, it is not immediately
clear in which direction they will move. For instance, it is possible that the trailing
particle moves toward the wall owing to the flow disturbance of the leading particle,
while the leading particle itself moves away from the wall owing to the inertial lift
force. It is also possible that both particles move away from the wall because the
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inertial lift force dominates the movements of the particles. There is competition
between the viscous force and inertial force acting on the particles and at low, but
finite, Re it is not clear which one dominates. The understanding of the behaviour of
two interacting and colliding particle in a shear flow is fundamental to understanding
the formation of particle clusters (for instance in the form of strings) and particle
bridges in such flows. Sharp & Adrian (2001) reported about shear induced arching
(called in our paper, bridging) to be the main mechanism causing channel blockage
in microtubes. They drew this conclusion based on the observation of the geometrical
configuration of the blockages; these blockages look very similar to the one we report
in figure 1. The explanation is based on the likelihood of particles colliding when
placed in a non-uniform laminar-flow velocity profile. Collisions are then followed
by the formation of arches; they assume that ‘particles are uniformly dispersed at
the inlet of the channel, some mechanisms must bring the particles together in the
channel’, (see Yamaguchi & Adrian 2004). We show in this paper that this mechanism
is correlated with a weak (but not negligible) inertial effect in the proximity of a wall.

In the formation of particle clusters or bridges, colloidal forces (for instance van der
Waals forces or the electrical-double-layer force) can play a crucial role. The particles
can be pushed together by hydrodynamic forces and particle cluster formation or
particle bridge formation can then occur owing to the colloidal forces. Here, we limit
ourselves (as a starting point) to the hydrodynamic interaction between two particles
in a shear flow in the vicinity of a wall. Colloidal forces are taken into account in
an indirect way. From the colloidal properties of the material (assumed to be clays)
we can calculate at what distance the colloidal forces start playing a role. When the
two particles become closer than this distance, we stopped the simulation and we
recorded a ‘collision’. Also, the flow geometry is first simplified by studying the flow
of two particles in the shear flow close to a plane wall. In the last part of the paper,
we investigate the movement and collision of particles in a convergent flow geometry,
similar to that shown in figure 1. In such a way, first we understand the basic feature
of particle collisions in a simplified geometry and later we will make use of this
understanding to explain particle collisions and, hence, bridge formation in a more
realistic, and more complex, geometry.

The practical and the environmental relevance of this study is discussed in the
conclusion.

2. Lattice-Boltzmann method
2.1. Numerical scheme

For our numerical simulations, the lattice-Boltzmann method was used. This method
can treat moving boundaries with a complex geometry in an efficient way. Simulations
with this method for the case of a single spherical particle settling in a confined
geometry have shown very good agreement with experimental results (see ten Cate
2002; ten Cate et al. 2002). The lattice-Boltzmann method uses a mesoscopic model
for the fluid behaviour, which is based on collision rules for the movement of
hypothetical particles (not to be confused with the physical particles) on a grid. The
grid is a uniform simple cubic lattice. It can be shown that, after averaging, the
continuity equation and Navier–Stokes equation are satisfied. The lattice-Boltzmann
method was applied by Ladd (1994a, b) to calculate a flow with particles. Our method
is based on the work of Eggels & Somers (1995); it is described in detail in ten Cate
(2002). The boundary condition at the surface of a particle is taken into account by
means of an induced force-field method, similar to that used by Derksen & van den
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Akker (1999). In this method a particle is represented by a number of points located
on its surface. The surface points are evenly distributed with a mutual distance smaller
than the grid spacing. The no-slip condition at the particle surface is satisfied in two
steps. First, the fluid velocity at each surface point is determined via a first-order
interpolation of the fluid velocities in the surrounding grid points. Then (induced)
forces are assumed to be present at the surface points of the particle, of such a
magnitude that the fluid velocity in the surrounding grid points is changed in such
a way that the no-slip condition at the surface points is satisfied. Thereafter, the
hydrodynamic drag force (Fd) and also the torque (Md) acting on a particle by the
fluid are computed and used to determine the particle motion. The particle movement
is calculated with the aid of the following equations

m
d2x
dt2

= Fd, (2.1)

I
d2θ

dt2
= Md, (2.2)

in which m is the particle mass, I the moment of inertia, x the space coordinate, θ

the angle of rotation and t the time. This equation is integrated by using a simple
Euler integration scheme where the forces are time-smoothed over two time steps.

The computations were carried out on a three-dimensional grid. We used particles
of 10 lattice units (l.u.) radius. The length of the calculation domain is 400 l.u., the
height is 400 l.u. and the perpendicular direction has a length of 200 l.u. In a few
cases, we doubled the mesh size in each direction to investigate whether the results
are independent of mesh size.

2.2. Calibration procedure for the particle radius

As discussed, a particle surface is approximated in the lattice grid by means of
particle surface points. It is known that this approximation causes the particle to
experience a drag force that corresponds to a particle with a diameter larger than
the real diameter. This effect can be compensated by ascribing to the particle a
hydrodynamic radius that is smaller than the real radius. For the determination of
this hydrodynamic radius, a calibration procedure is applied. A now well-known
procedure was proposed by Ladd (1994a). He calculated the drag force acting on a
particle located in an array of particles with a periodic arrangement in two ways.
He used his lattice-Boltzmann method and applied the analytical solution for this
particular problem. From the comparison between the two results he found the
hydrodynamic radius. The calibration procedure is based on the analytical solution
of Hasimoto (1959) for the drag force on a fixed sphere in a periodic array of spheres
at creeping flow conditions

6πµaUu

Fd

= 1 − 1.7601C1/3
τ + Cτ − 1.5593C2

τ , (2.3)

where Cτ = 4πa3/3L3; L indicates the size of the unit cell, Uu is the volumetric
averaged fluid velocity across the unit cell, µ the fluid viscosity and a the particle
radius. We used the same calibration procedure.

The hydrodynamic radius was found for creeping flow conditions and we may
wonder whether the result also holds at finite Reynolds number when inertial effects
are important. Therefore, we have computed the inertial lift force on a sphere held
stationary in a linear shear flow in the presence of a wall at low, but finite, Reynolds
number. The results are compared with the analytical solution by Cherukat &
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Figure 2. Comparison between the lift force on a particle as calculated by our method (Flb)
and as calculated analytically Fanal by the procedure given in Cherukat & McLaughlin (1994).

McLaughlin (1994) in figure 2 for two values of the dimensionless distance δi from
the wall. (δi = yi/a, in which yi is the distance from the wall and, as mentioned earlier,
a the particle radius.) As can be seen, the results compare well.

2.3. Lubrication force between two particles at a small distance

Ladd (1997) found that for approaching particles, the lattice-Boltzmann method
breaks down at very small distances between two particles owing to the lack of spatial
resolution in the gap between the particles. He solved this problem by introducing an
extra lubrication force that accounts for the contribution to the hydrodynamic forces
due to the unresolved part of the flow field. This lubrication force (acting along the
centreline of two particles i and j ) is given by

Flub = −3πµa

s
x̂ij x̂ij · (ui − uj ), (2.4)

where s = R/a−2 is the dimensionless gap width (R is the distance between the centres
of the particles) and xij = xi − xj · xi and xj are the coordinates of the particles and
x̂ij = xij /|xij |; ui and uj are the particle velocities. The lubrication force is assumed
to be active, when the gap width between two particles is smaller than the distance
between two lattice grid points. As the near field hydrodynamic force plays a critical
role in our simulation, we used an improved version for the lubrication force given
by Kim & Karilla (1991), in which a logarithmic correction is included

Flub = −
(

3πµa

s
+

27πµa

20
log

1

s

)
x̂ij x̂ij · (ui − uj ). (2.5)

3. Relevant parameters
The particles are released with an initial velocity Up(t =0) equal to the unperturbed

local fluid velocity, given by U0 = αyi; α is the shear rate. The instantaneous particle
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velocity is defined as Wp = (Up, Vp) = dxp/dt and, hence, the relative horizontal
velocity is �Up =Up − U0(yp) while the relative vertical velocity is �Vp =Vp . The
important parameters for our problem are the particle Reynolds number (Re)

Re =
ρf a

√
�U 2

p + �V 2
p

µ
, (3.1)

and the shear flow number

S =
αa√

�U 2
p + �V 2

p

, (3.2)

where ρf is the density of the fluid and (as mentioned earlier) µ is the fluid viscosity.
Since Re = 0 and S → ∞ at t = 0, we introduce two alternative dimensionless

groups: the shear Res-number,

Res =
ρf a2α

µ
, (3.3)

and the initial dimensionless distance from the wall,

δi =
yi

a
. (3.4)

We made calculations for the following two values of the shear Reynolds number
Res = 0.01 and Res = 0.1. For the initial dimensionless distance from the wall for the
leading particle, we chose δi = 20 (particle far away from the wall) and δi = 2 (particle
close to the wall). The initial position of the trailing particle relative to the leading
one is of crucial importance for the behaviour of the two particles and it is studied
in detail.

4. Single particle in a linear shear field
A spherical particle in a shear field at non-zero Reynolds number undergoes both a

drag force and a lift force. The effect of these forces is to move the particle away from
the wall. Initially, the particle is released at a distance δi from the wall with the same
velocity as the fluid. The particle begins to rotate, leading to a lift force that causes
the particle to move away from the wall. Then, the difference in velocity between the
fluid and the particle generates the drag force. It is known that the inertial lift force is
proportional to the Reynolds number. As in our case the Reynolds number is small,
only a small movement away from the wall is observed. After an initial period during
which the initial conditions play a role, the particle trajectory becomes linear. Similar
results have been found by Feng & Michaelides (2003) (at higher Reynolds number
and with gravity effect). Calculations concerning the motion of a single particle in a
shear flow were also performed by Patankar et al. (2002). They studied the lift-off of a
single particle in a two-dimensional channel. Even if their conclusions and results are
qualitatively similar to ours, it is worth pointing out that the shear Reynolds number
they were interested in is much higher than ours. The relative velocity, defined as
the fluid velocity at a certain position for the particle-free case minus the particle
velocity at the same position, increases at the beginning and then becomes a constant
value. The initial increase of the horizontal velocity is caused by the particle moving
to regions where the fluid velocity is higher. The final relative velocity is very small
(compared to the velocity of the unperturbed flow); the particle follows the fluid
almost completely.
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Figure 3. Plot of the vertical component of the fluid velocity. Res = 0.01 (Re =6.4 × 10−4), ini-
tial position δi = 20 and instantaneous position δ = 20.12. Red: upward (positive component);
blue: downward (negative component).

In order to understand the complicated flow field, we focus our attention on the
vertical fluid velocity component, shown in figure 3. First, we consider the flow pattern
around a single sphere moving in an unbounded fluid and then we discuss a particle
moving in a shear flow without rotation and finally a rotating particle in a shear flow
(without translation). In this way, the complete flow pattern around a particle moving
in a shear flow with translation and rotation becomes clear.

The flow pattern around a single particle in a homogeneous flow can be found in
many textbooks on fluid mechanics (see for instance Batchelor 1965). The asymmetry
between the flow field at the back and at the front of the particle originates from the
non-zero Re conditions (Oseen’s flow). Next, we discuss the flow field for a particle
translating in a linear shear without rotation. Of course, the particle has a tendency to
start rotating, but we stopped this tendency. For a spherical particle in a shear flow,
the two upper vertical-velocity lobes (that are positioned in the high-velocity region)
are stronger than the two lower vertical-velocity lobes (that are in the low-velocity
region). The asymmetry between the front of the particle and its back is due to the
inertial forces at finite values of the Reynolds number and can also be observed for
a particle in a homogeneous flow at non-zero values of the Reynolds number.

The vertical-velocity field around a rotating particle in a fluid (at rest at large
distances) is determined by the fact that the fluid is dragged around to satisfy the
no-slip condition.

We can now try to understand the fluid flow pattern shown in figure 3 in terms of
the elementary ‘building blocks’ we have just described. Very close to the particle there
is a thin layer of positive fluid vertical-velocity on the left-hand side of the particle,
and a negative one on the right-hand side. These two regions are a consequence
of the rotation of the particle in a clockwise direction. The two lobes at the top
of the particle and the two lobes at the bottom are also because of the rotation of
the particle, as can be concluded from their sign. So the rotation of the particle is
very important in the determination of the fluid flow field. The two middle lobes
originate from the two upper lobes for a translating non-rotating particle, but they
are deformed because of the particle rotation.

We now analyse the forces acting on a particle using the fluid flow field around
the particle, keeping in mind that �Up and �Vp are horizontal and vertical relative
velocities and Ωp is the rotational speed. The force balance in the vertical direction
must account for the upward inertial lift force (∼ ρf αa3�Up), the downward force
due to the Magnus effect (∼ ρf Ωp�Upa3), and the component of the drag force in
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the vertical downward direction (∼ µa�Vp). An order of magnitude analysis shows
that the inertial lift force and Magnus force are both significant, while the vertical
component of the drag force is negligible. In the horizontal direction, there are two
forces: the viscous drag (∼ µa�Up) (pointing forward as the particle travels slower
than the fluid), and the horizontal component of the lift force (∼ ρf Ωp�Vpa3) (also
pointing forward). Since Re < 1, the particle accelerates in the horizontal direction,
as it rises in the shear flow.

The analysis of the flow field can now be used to understand the behaviour of
a trailing second particle because, to the first approximation, the trailing particle
behaves as a point particle without influencing the fluid. In the next section, this
effect of the trailing particle is included. From figure 3, we see that a trailing particle
responds to the flow field of the leading particle in a variety of ways. When the trailing
particle enters the region behind the leading particle where the vertical velocity of the
fluid is positive, the trailing particle has a tendency to be pushed upward. When the
trailing particle enters the region where the vertical velocity of the fluid is negative,
the trailing particle tends to move downward. However, there is an inertial lift force
acting on the trailing and leading particles, that wants to push the particles upward.
So while the leading particle will probably rise, the trailing particle can move upward
or downward depending on the competition between the two tendencies described
above. We comment on these suggestions in the next section where the results of two
finite-size particles are presented.

We can also give a ‘mechanism’ diagram to explain the flow field around a particle
in a shear flow and to explain the behaviour of a trailing second (point) particle (see
figure 4). Again the flow field is considered to be built up from a number of basic
elements. The flow disturbance due to the rotation of the particle is upward (u) on the
left-hand side of the particle and downward (d) on the right-hand side (see figure 4a).
Because of its inertia, the particle will move more slowly than the mean fluid velocity.
This yields a flow disturbance with two recirculation regions, one above and one below
the particle (see figure 4b). Finally, owing to the inertial lift force, the particle moves
upward and causes also two recirculating regions, one at the left-hand side and one
at the right-hand side of the particle (figure 4c). The combination of all contributions
is sketched in figure 4(d). This diagram explains again, that a trailing second particle
that enters the flow field behind the leading particle at a larger distance from the wall
than the leading particle will probably move upward. A trailing second particle that
enters the flow field behind the leading particle at a smaller distance from the wall
than the leading particle will probably move downward.

The effect of Re on the vertical velocity of the fluid is analysed. The flow field
is qualitatively the same as with the six lobes for the vertical component of the
velocity. The fluid region around the particles that is influenced by the presence of
the particles is reduced for larger values of the Reynolds number. This feature is
essential for understanding the possibility of collision between the particles. At low
values of the Reynolds number the presence of a particle is felt at larger distances
from the particles than at high values. So at low values of the Reynolds number,
the particles start feeling each other at larger distances (than for large values of the
Reynolds number) and they have more time to rearrange their position.

The flow field around a particle is also influenced by the distance from the wall.
As the particle becomes closer to the wall, the flow field close to the wall starts
interacting with the wall itself. The region where the trailing particle is influenced by
the leading particle is pushed upward and increases its size. The upper left lobe where
the fluid is dragged upward, is pushed against the particle. We expect a collision to
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Figure 4. Mechanism diagram for flow field around a particle. u, upward; d, downward.
(a) Particle spinning with angular velocity, Ωp. �Up = 0, �Vp = 0. (b) Particle translating
horizontally with relative velocity �Up. �Vp = 0,Ωp =0. (c) Particle translating vertically
with relative velocity �Vp. �Up = 0, Ωp = 0. (d) Effect of the motion resulting from the
superposition of (a), (b) and (c), showing that the dotted location is one that will continue
and remain their.

be more likely for particles close to the wall than for particles far away from it. The
trailing particle is not so easily pushed away from the leading particle as in the case
where the particles are far away from the wall. The flow field is qualitatively similar
in both cases, but a stronger interaction between the wall and particles close to the
wall modifies more strongly both the size and the position of the six vertical-velocity
lobes.

5. Two particles in a shear flow
We now study the hydrodynamic interaction and flow behaviour of two finite-size

particles in a shear flow close to a wall at small, but finite, Reynolds number. So
the fluid flow disturbance due to both particles is taken into account. Particular
attention will be paid to the possibility of a collision between the particles. We study
the interaction between two equal-size particles (with radius a) in a shear flow (with
shear rate α). The particles are assumed to have initially the local fluid velocity and
they are free to move and rotate in response to hydrodynamic forces. We can find
two different types of trajectories for the particles. The trailing particle can first move
downward toward the wall and move upward later on, or the trailing particle can
move upward from the start. In both cases, the different behaviour is determined
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Figure 5. Trajectory map, giving an overview of the initial positions of the trailing particle
with respect to the leading one. These lead to upward (�), i.e. moving away from the wall, or
downward (∗), trajectories. Res = 0.01 and δi = 20.

by the difference in the initial position of the trailing particle. If the trailing particle
is initially completely immersed in a flow region of the leading particle where the
fluid velocity is pointing downward, then it also starts moving downward. Whereas,
if the trailing particle starts at a greater distance from the wall, where the influence
of the leading particle pushes the particle upward, then it will move upward. So the
conclusion is that when the particles are close together, the particle-induced fluid
flow field dominates the particle relative movement. When the particles are farther
apart, the shear flow field due to the presence of the wall becomes more important.
When the particles do not collide, the distance between them increases and finally
they behave as single particles and both move upward. In the final period also the
velocity of the particles relative to the fluid is the same as in the case of a single
particle. We do not treat here the case where the leading particle starts at a greater
distance from the wall than the trailing one. In that case, the leading particle travels
faster than the trailing one and it never catches up.

In the trajectory map (figure 5), we show the effect of the relative initial position
on the initial stage of the trajectory of the trailing particle: a triangle means that,
starting from that initial position, the particle initially move away from the wall,
while an asterisk indicates particles initially moving toward the wall. As can be seen
from the trajectory map, the region of initial positions for the trailing particles that
initially move downward is not symmetrical behind the leading particle, the flow itself
not being symmetrical. Note that the size of the region where these initially move
downward shrinks as the Re increases. This is because the initial downward or upward
bending of the trajectory of the trailing particle is induced by the movement of the
leading particle and (as mentioned), at large values of the Re-number, this influence
is less than at lower values. The leading particle will move upward regardless of the
initial position of the trailing one because of the inertial lift force.

The flow pattern for two particles is similar to that for a single particle. The
asymmetry in the vertical direction is a consequence of the shear field, the horizontal
asymmetry is due to the inertial force at finite values of the Reynolds number. We want
to analyse the flow pattern around the two particles. There is a strong interaction
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Figure 6. Collision map for Res = 0.1 and δi = 2.

between the particles: the back region of the leading particle (where the vertical
velocity component is pointing downward) influences the movement of the trailing
particle. That region with a negative velocity component increases. Similarly, the
region close to the leading particle that pushes the leading particle upward increases.
These observations explain why, when the velocity regions completely overlap, the
leading particle moves away from the wall faster than for the single-particle case,
and also why the trailing particle initially moves downward. The interaction between
the flow regions around the particles determines the trajectories of the particles and
their possible collisions. It is worth noting that the vertical velocity component of
the trailing particle is smaller than for the case of a single particle and this is due to
interaction with the leading particle.

However, the situation is different when the negative vertical velocity region at the
lower right-hand side of the trailing particle overlaps with the positive velocity region
of the leading particle. The net effect is that the leading particle moves more slowly
upward than for the single-particle case. The trailing particle moves upward more
quickly than in case of a single particle. When this kind of flow pattern is observed,
both particles will rise. In this case, the particles can rotate around each other and
do not collide.

When the relative position is such that the lower right-hand velocity region of
the trailing particle first interacts with the velocity region at the back of the leading
particle, a collision does not take place. However, when the complete velocity region
at the right-hand side of the trailing particle interacts with the velocity region at the
back of the leading particle, a collision can occur. At high Reynolds number, the
perturbed fluid velocity regions around the particles reduce in size.

To summarize the results we build the collision maps, sketched in figures 6 to 9. As
discussed, the differences in flow pattern and particle trajectories depend on the way
in which the two particles approach each other. The collision maps are made in the
following way: we place the trailing particle at a certain initial position with respect
to the leading particle, we release them with the local fluid velocity and we calculate
the trajectories of both particles. We indicate on the collision map whether the initial
positions of the two particles lead to a collision or not. So the map represents all the
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Figure 7. Collision map for Res = 0.01 and δi = 2. As can be seen from a comparison with
figure 6, the collision region decreases with decreasing Res-number.
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Figure 8. Collision map for Res = 0.1 and δi = 20. As can be seen from a comparison with
figure 6, the collision region decreases with increasing distance from the wall.

initial relative positions of the two particles that do or do not lead to a collision. This
showed the influence of the initial positions on the likelihood of collisions.

We investigated the influence of the Reynolds number and the initial distance from
the wall on the form of the collision map. The results are shown in figures 6 to 9. The
influence of Reynolds number can be seen from a comparison between figures 6 and
7, and from a comparison between figures 8 and 9. The collision region increases with
increasing Reynolds number. This is because the regions where the flow is disturbed
reduce in size with increasing Reynolds number. The influence of the wall can be seen
from a comparison between figures 6 and 8, and from a comparison between figures 7
and 9. As expected, more collisions will occur for particles close to the wall. This
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Figure 9. Collision map for Res =0.01 and δi = 20.

effect is due to the strong deformation of the flow field around the particles close to
the wall, because the particle rotation is greater near the wall. The deformation region
behind the leading particle, having a negative vertical component, increases and at
the same time the wall pushes the leading particle away from it. As a result, more
collisions occur. It can also be seen from the figures, that close to the wall the collision
region is less influenced by the Re-number. So far, we have analysed only the case in
which the initial positions of the two particles are in the same plane. It is interesting
to look at possible effects of the offset in the out-of-plane direction. For the case
Res =0.1 and δi = 2, we have carried out simulation for offsets (in the out-of-plane
direction) equal to a/4, a/2, 3a/4 and a. From figure 10, we can see similar collision
maps to those shown before; it has to be noted that in this case the collision regions
shrink so that for an out-of-plane offset equal to a, no collisions are found. We
also simulated for the case at lower Re (Res =0.01 and δi =2); qualitatively, the
collision region is unchanged even if it shrinks more rapidly, as could be expected
from previous discussions. The effect of the distance from the wall has been analysed
by comparing the case at Res =0.01 and δi =2 with the case at Res = 0.01 and δi = 20.
As the initial distance of the particles form the wall becomes greater, the collision
region shrinks. In order to make a more quantitative description of the influence of
the different parameters on the collision region, we have calculated the ratio between
the area of the collision region and the particle surface as a function of the different
parameters. These calculations are summarized in table 1. In the same table, we also
show the volume of the collision region as a function of the different parameters.

We may wonder, what type of particle clusters may develop owing to collisions
when many particles are present in the flow field. The results presented in the collision
maps suggest that each particle tends to collide and cluster at the upper back part of
a preceding particle.

6. Preliminary calculation of particle bridge formation
As mentioned in § 1 we are, in particular, interested in particle bridge formation in

the pore throats of a porous material. To that purpose we have made a preliminary
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Figure 10. Influence of out-of-plane offset on the collision map for the case Res = 0.1 and
δi = 2. No collisions are recorded for an offset equal to a. (a) Collision map for Res = 0.1
and δi = 2, the out-of-plane offset is a/4. The dotted line is the sphere of radius a, while the
continuous line represents the sphere in the plane of the tralling particle. (b) Collision map for
Res = 0.1 and δi = 2, the out-of-plane offset is a/2. The dotted line is the sphere of radius a,
while the continuous line represents the sphere in the plane of the trailing particle. (c) Collision
map for Res =0.1 and δi = 2, the out-of-plane offset is 3a/4. The dotted line is the sphere of
radius a, while the continuous line represents the sphere in the plane of the trailing particle.

calculation concerning the movement, possible collision and bridge formation of two
particles in a converging flow at the entrance to a (suddenly) narrowing part of a two-
dimensional channel (the throat). In figure 11, a sketch of the flow geometry is given.
For x/a < 0, there is a two-dimensional channel with solid walls at y/a = −15 and
y/a = +15; for x/a > 0 the walls are at y/a = −1.5 and y/a = +1.5. Far upstream of
the throat there is a parabolic fluid velocity profile, the flow is from left to right. Two
particles can pass simultaneously through the throat only when they move behind
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Out-of-plane Re = 0.01 Re = 0.1 Re = 0.01 Re = 0.1
offset δi = 20 δi = 20 δi = 2 δi = 2

0 0.48 1.87 2.12 4.16
a/4 0.11 0.67 0.93 2.23
a/2 0 0.14 0.19 1.19
3a/4 – 0 0 0.44
a – – – 0
Volume 0.12 0.71 0.93 1.43

Table 1. Collision areas (made dimensionless by πa2) for different out-of-plane displacement
as a function of the relevant parameters; the last line of the table shows the collision volume
(made dimensionless by the 4/3πa3). The collision maps relative to those cases are available
upon request.
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Figure 11. Bridge formation map for Res = 0.01 and δi = 20. The initial position of the leading
particle is at x/a = −15, y/a = −13. The bridge formation area is considerably larger than the
collision area shown in figure 9. Moreover, it consists of two parts. The total collision area is
23.8a2. The same trend is noted for Res = 0.1, in this case the collision area is 29.2a2.

each other through the throat; in other cases, a particle bridge is formed at the throat
entrance.

We have carried out additional lattice-Boltzmann calculation for two particles in
the flow field with the geometry given in figure 11. The simulations are similar
to those described in the preceding paragraphs for the movement of two particles
in the vicinity of a flat solid wall, only the geometry is different. It is pointed out,
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that although the geometry consists of a two-dimensional channel, the simulations are
three-dimensional owing to the spherical geometry of the particles. In our simulations,
we fixed the initial position of the leading particle at x/a = −15, y/a = −13, and we
varied the initial position of the second particle. For all these cases, we calculated
the trajectories of the particles and the possibility of a bridge formation by the two
particles at the pore throat. We summarize the results in the bridge formation map
also given in figure 11. As can be seen from figure 11, the bridge formation area (area
of initial position of the second particle for which bridge formation occurs in the
pore throat) is considerably larger than the collision area (area of initial position of
the second particle for which collision occurs for the flow along a flat plate) shown in
figure 9. Moreover, the bridge formation area consists of two parts. When the second
particle starts in the vicinity of the wall on the opposite side of the pore, the two
particles can arrive simultaneously at the pore throat. This is, of course, due to the
converging flow close to the pore throat.

To investigate the influence of the inertia forces on the collision mechanisms and
hence on bridge formation, we have carried out simulations at very low Re (i.e.
Re = 10−5). For this Re, we could not detect any collision apart from when the
trailing particle starts at the symmetrical position. In this case, the collision is due
to the (very unlike) starting position rather than to hydrodynamics effects. So, we
believe that the inertia effect (even if small) is responsible of the collisions. To further
stress this point, it is worth reminding that, for membranes, Ramachandran & Fogler
(1998) experimentally found bridge formation appearing at Re = 6 × 10−3, but not at
Re = 1.2 × 10−4. Poesio & Ooms (2004) reported bridge formation in porous media at
low (but not zero) Re: bridge formation is reported to happen already at Re = 10−3,
but not at lower values. All the investigations reported so far have indicated a
critical value of the Re at which particles start forming bridges and we believe this
is connected with the increasing importance of the inertial forces. We are not able to
predict this value, which depends on several flow features such as geometry, particle
concentration and colloidal properties.

It is pointed out that much more work is required to study particle bridge formation
in pore throats. For instance, in natural sandstones, bridge formation usually occurs
with many particles (see figure 1). Three-dimensional simulations with so many
particles are not possible at the moment.

7. Conclusion
In this study of the behaviour of two particles in a shear field in the vicinity of a wall,

detailed computations and order of magnitude results have been presented for the
flow disturbances around the particles. Particular emphasis is given to the conditions
for which a collision between the particles occurs. To that purpose, collision maps
have been calculated for two values of the Reynolds number and two values of the
initial distance from the wall. In a collision map, the area of initial positions of the
trailing particle with respect to the leading particle that leads to a collision, is shown.
This collision area increases with increasing Reynolds number and decreasing distance
of the leading particle to the wall. Also, a first investigation has been made of particle
bridge formation in a converging flow geometry. It turns out that the likelihood of
collision by particles and hence the bridge formation area for a converging flow is
considerably larger than the collision area for the flow along a flat plate. We have
shown that at very low Re (Re =10−5) collisions do not happen, while they appear at
higher Re and they are more probable (i.e. they happen for a larger number of initial
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positions) as Re increases. This indicates that, in proximity to the wall, collisions
are dominated by weak inertia effects. This conclusion is in agreement with previous
experimental works both on membranes (Ramachandran & Fogler 1998), and on
natural porous material (Poesio & Ooms 2004). Of course, the particle shapes in
reality may be different from the spherical one considered in this publication (see
figure 1). However, as noted in the paper, the collision mechanism is dominated by
the inertial lift force acting on the particles. It has been shown by Auton et al. (1988)
that the lift force acting on a spherical-like particle in a shear flow is not sensitive to
its precise shape.

This study relates to acoustic stimulation of fouled porous media. Decline in
permeability has a very dramatic effect on the near wellbore region of an oil reservoir
and it leads to a reduction in productivity. Many techniques have been used to
overcome this problem (for instance the use of acid), but they have negative side effects
(being, for instance, environmentally unfriendly). Recently, the acoustic stimulation
of the near wellbore region has been proposed as a possible remedy. This technique
is very cheap and environmentally friendly. The effectiveness of this technique is
related to the cause of permeability reduction (particle deposition or particle bridge
formation). While particle deposition is a widely known mechanism, formation of
particle bridges was not understood. Poesio et al. (2004) have already studied the
possibility of removing particles attached to the pore walls by acoustics. Experiments
(Poesio & Ooms 2004), have shown that particle bridges can also be removed. Now
that we have understood the phenomena involved in the bridge formation we are
ready to take the next step and investigate the mechanisms involved in the removal
of particle bridges.
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